Infrastructure and Applications for Large-Scale DNS Data Collection

Keith Mitchell
OARC Programme Manager
Internet Systems Consortium
AusCERT
21st May 2007
Presentation Overview

• Introduction
• OARC Background
• OARC Data-gathering
• “Day in the Life of the Internet”
• Root Server Attack 6th Feb 2007
Introduction
What is the DNS?

- Internet Domain Name System
- Provides conversion from human/application-friendly “domain names” (e.g. www.isc.org).
- ..to network-friendly Internet Protocol addresses (e.g. 204.152.190.196, fe80::200:1aff:fe1a:2761)
- Highly distributed servers, hierarchy delegated from
 - 13 “root” servers
 - “top-level” (e.g. “.au”, “.org”) servers
 - providers
 - users
What is ISC?

• Internet Systems Consortium, Inc.
 ▪ Headquartered in Redwood City, California
 ▪ 501(c)(3) Nonprofit Corporation

• Mission:
 ▪ To develop and maintain production quality Open Source software, such as BIND and DHCP
 ▪ Enhance the stability of the global DNS through reliable F-root nameserver operations and ongoing operation of OARC
 ▪ Further protocol development efforts, particularly in the areas of DNS evolution and facilitating the transition to IPv6.
What is OARC?

- Operations, Analysis and Research Center for the Internet
- Co-ordination centre to protect Global DNS infrastructure
- Trusted, neutral environment for operators and researchers to:
 - gather and share data
 - co-ordinate response to attacks
- Secretariat run and managed by ISC
Speaker’s Background

- Internet operations and development since 1986
- Network security *survivor* rather than expert...
- Founder and Director of *Nominet UK* 1996-2002
- Chair of *RIPE NCC* Executive Board 1998-2000
- Founder and CTO of pan-European commercial IXP operator, *XchangePoint* 2000-2004
- Chair of *UK Network Operators' Forum* 2005-
- Moved to US (Cleveland OH) Q2 2006-
OARC Background and Introduction
OARC Mission

- Provide trusted channels for Internet incident reporting and handling
- Facilitate confidential sharing of DNS operations data
- Interface with research community for analysis and publication
- Outreach to vendors, end-users and law enforcement
OARC Motivation

- DNS infrastructure makes everything work as expected
- DNS outage of any network service provider or large content provider affects everyone using the Internet
- Growing resource demand for Internet:
 - abuse prevention
 - infrastructure protection
 - operational co-ordination
OARC Motivation

• Increasing incidence of attacks against the DNS
• DNS increasingly implicated in and compromised by Botnet activity
• A lot of unwanted traffic on the Internet is a result of DNS misconfiguration
 ▪ e.g. in-addr queries to RFC1918 addresses
• New DNS technology challenges
 ▪ DNSSEC, IDN, ENUM, IPv6
DNS as Abuse Vector

- “Fast-flux” short-lifetime domains for BotNet C&Cs
 - Also for Phishing
- “Cache poisoning” injecting bogus data
- “Pharming” hi-jacking of DNS queries from infected machines
- DDoS amplification
 - unsecured recursive resolvers open to answer source-spoofed queries from anywhere
 - response packets much larger than queries
DNS as Abuse Victim

- Mostly large-scale attacks against top-level DNS infrastructure
 - Microsoft outage in 2001
 - DDoS attack on Root Servers 2002
 - Open recursive resolvers Q1 2006
 - DDoS attack on Root Servers Feb 2007
- Attack motivation unclear
 - proof of capability?
- DNS infrastructure increasingly robust to these
DNS as Abuse Preventor

• By doing large-scale gathering of DNS traffic, it becomes possible to identify traffic patterns underlying abuse
• Network operators in best position to gather data
• Researchers often in better position than network operators to analyse data
• Data resource potentially available to law enforcement to trace abuse sources
OARC Members

• Current total 44, includes:
 ▪ 6 root server operators
 ▪ 2 gTLD operators
 ▪ 12 ccTLD operators
 ▪ 11 DNS implementers
 ▪ researchers at 5+ institutions
 ▪ RIRs, DNS registrars, operators

• 10+ potential new members in pipeline
OARC Members

- Afilias
- AFNIC
- APNIC
- Autonomica
- BFK
- Cambridge Univ
- ChangeIP.com
- CIRA
- Cisco
- Cogent
- CZ.NIC
- Damballa
- DENIC
- eNom
- EP.net
- F-root
- Georgia Tech
- Google
- II-F
- Internet Perils
- ISC
- ISoc-IL
- Microsoft
- NASA Ames
- NASK
- NIC.CL
- NIDA
- Nlnet Labs
- Nominet UK
- NTT
- OpenDNS
- PIR
- Registro.BR
- RIPE NCC
- Shinkuro
- SIDN
- Team Cymru
- UMR.edu
- NeuStar/uDNS
- UMD.edu
- WIDE
OARC Member Services

• DSC Data Gathering
 • Domain Statistics Collector
• Data Analysis
 ▪ Member-only mailing list
 ▪ Other closed DNS mailing lists
 ▪ Encrypted jabber.oarc.isc.org chat server
 ▪ https://oarc.isc.org portal
DSC Data Gathering

Most Popular TLDs Queried
From Feb 19, 2007, 00:00:00 To Feb 16, 2007, 17:25:11 UTC

[Graph showing the mean query rate for different TLDs]
Taiwan earthquake
OARC Public Services

- Twice-yearly open meetings for DNS researchers and operators
 - next in Chicago 27/28th July
- <dns-operations@lists.oarcinfo.net> mailing list
- http://public.oarcinfo.net website

- Home for:
 - “Orphan Projects”
 - “Flood Victims”
OARC Data-Gathering Infrastructure

- Celestica Opteron Servers
- fd1/2 SuSE-10.1 Linux-based (for JFS support)
- NFS clients FreeBSD-based
- 16*500Gb SATA in RAID6
- full fiberchannel multipath resilience planned
A “Day in the Life of the Internet” (DITL)
8-10th Jan 2007
“Day in the Life of the Internet”

• Wide-ranging collaborative research project to improve “network science” by building up baseline of regular Internet measurement data over 48-hour periods

• See http://www.caida.org/projects/ditl/

• DNS data gathered via OARC is one part of this
DITL 8-10th Jan 2007

- OARC has supported this annually since 2004
- DNS query data gathered close to participating root and TLD servers using tcpdump into “PCAP” files
- Uploaded via ssh script to central OARC RAID system
- Available to OARC members for analysis
DITL Jan 2007 Participants

- c.root-servers.net | Cogent
- e.root-servers.net | NASA
- f.root-servers.net | ISC
- k.root-servers.net | RIPE NCC
- m.root-servers.net | WIDE
- as112.namex.it | NaMEX
- b.orsn-servers.net | FunkFeur
- m.orsn-servers.net | Brave GmbH
DITL Challenges

• Too much data
 ▪ problem of success!
 ▪ ran out of disk space 2 hours before end
 ▪ “in-flight” upgrade to fix this...

• Limited space on collecting servers
• Bandwidth loss due to Taiwan quake
• Too close to seasonal holiday
• Bleeding-edge platforms
DITL Lessons Learned

• Do pending upgrades and estimate of data volumes **before** you start!
• Simple legalities = enlarged participation 😊
• Data uploading was harder than gathering
 ▪ dry-runs helpful
• Disable auto-rotation
• Generate, preserve, share and validate data MD5 checksums
• Upgraded hardware performed well overall
DITL Results

- OARC RAID now holds over 2TB of data
 - available for research analysis
 - space for at least as much again
- Report summarising outcomes available to participants and OARC members
- More roots interested for next time
- Left us in great shape to do it again without notice 4 weeks later…
Root Server DDoS Attack
6th Feb 2007
Anycast DNS Deployment

- DNS architecture means there can only be 13 root-server IP addresses
- Creates potentially vulnerable bottleneck
- Anycast allows each IP address to have multiple server instances
- Servers geographically distributed to spread query and attack traffic
 - end-users transparently use “nearest” server
- ISC's f-root instance pioneered Anycast
F-root Anycast Instances
Root DDoS Attack

Queries by Node
From Feb 06, 2007, 05:26:05 To Feb 13, 2007, 05:26:05 UTC

Query Rate (q/s)

Date
Feb 6 Feb 7 Feb 8 Feb 9 Feb 10 Feb 11 Feb 12 Feb 13
Attack overview

• Commenced at 10:00 UTC on Tue 6th Jan for 24 hours
• At least 6 Internet root and 1 TLD name servers sustained a DDoS attack
• Attack did not impact on end-user service, but was measured
• Preliminary observations made at F-root include:
 ▪ type, quantity and distribution of attack traffic
 ▪ how it coped
• See also ICANN report:
 ▪ http://www.icann.org/announcements/factsheet-dns-attack-08mar07.pdf
Attack points of interest

- Happened **exactly** 4 weeks after 2007 DITL
 - may allow baseline comparison
- Happened during NANOG meeting
 - usual suspects on-hand...
- Did not use any exotic amplification techniques
- Mostly did not spoof source addresses
Aggregated traffic on F root
Seoul - capped at 1Gb/s

Beijing - peaked at 300Mb/s
Service impact
Some nodes got nothing
Others saw peculiar patterns
Other equates to 35 F-root anycast nodes.
Packet analysis

• All UDP port 53 DNS queries, containing random data
• Average size was bigger than normal traffic
 ▪ Size random up to 1024 bytes
 ▪ Most were more than 350 bytes
• Some were malformed DNS messages
• Contained random QTYPEs
 ▪ updates, unknown, etc
Attack Observations

- Anycast works!
 - end-users not really impacted
 - some F-root nodes impacted, but service overall maintained
 - non-anycast nodes (G, L) hit hardest
- Filtering packets >512 bytes only partially effective
- Main sources S Korea and BellSouth, but .kr caused most of the pain
- More analysis required, will be presented at upcoming NANOG and OARC meetings
OARC Futures

• Additional resources required
• Further develop trusted communications model
• Member and open DNS Operations meeting at Chicago IETF meeting end July

• “Passive DNS” - major project to aggregate live DNS resolver data
 ▪ seeking infrastructure funding and partners
Passive DNS

- Florian Weimer invented this concept
- Gather data close to end-user resolver servers
- Implementation in academia
 - Sensors in European ISPs & Universities
- Used today by world wide LEO community
- “Inverse directory” & botnet hunting
 - what names map to “this” address?
 - when was “this” name first used and by whom?
 - who has looked up “this” botnet C&C name?
Acknowledgments

- Dave Knight, ISC/Afilias
- Joao Damas, ISC
- John Kristoff, UltraDNS
- ICANN L-root team
- All DITL contributors
OARC Further Info

- **Web:** https://oarc.isc.org
- **E-mail:** keith_mitchell@isc.org
- **Jabber:** keith@jabber.oarc.isc.org
- **Phone:** +1 650 423 1348 (EST)
 +44 778 534 6152
- **Paper:**
 http://public.oarci.net/files/oarc-briefing.pdf

http://public.oarci.net/files/AusCERT-DNSdata.pdf
Questions ?