
resperf

resperf
Performance
Tool
Manual
Version 2.0.0
Date February 14, 2012

Copyright ©2002-2012 Nominum, Inc. - All Rights Reserved

This software and documentation is subject to and made available pursuant to the terms of the
Nominum License Agreement, and may be used or copied only in accordance with the terms of that
Agreement. This manual, in whole or in part, may not be reproduced, translated or reduced to any
machine-readable form without prior written approval from Nominum, Incorporated.

Nominum, Incorporated
2000 Seaport Boulevard

Suite 400
Redwood City, CA, 94063

USA
http://www.nominum.com

Centris, Navitas and Vantio are trademarks of Nominum, Incorporated.

All other trademarks are the property of their respective companies.

http://www.nominum.com

1

resperf
The resperf program measures the resolution performance of caching DNS servers. It is a
caching-specific DNS testing companion to dnsperf, Nominum’s authoritative DNS testing tool.

dnsperf was designed for benchmarking authoritative DNS servers—numerous attempts to use dnsperf to
test caching DNS servers have been made, with poor results. A tool that addressed the specific require-
ments inherent in the testing of caching name servers was required.

A key difference between caching and authoritative DNS servers is that caching servers may need to work
on thousands of queries in parallel to achieve maximum throughput, whereas authoritative servers pro-
cess queries in order and one-at-a-time.

For authoritative servers, dnsperf tests this “self-pacing” approach by sending a small burst of
back-to-back queries to fill up network buffers (keeping the server at 100% utilization), and sending a
new query when a response is received. This approach works well for authoritative servers, and even
works (relatively) well for caching servers in a closed laboratory environment in which the server is “talk-
ing” to a simulated Internet on a single LAN.

For caching servers, however, this approach fails to accurately test performance when “talking” to the
actual Internet—as previously mentioned, under real-world conditions a caching server may need to pro-
cess thousands of queries in parallel to achieve maximum throughput.
Nominum 1

2 Chapter 1: resperf
Command Synopsis

resperf [-a local_addr] [-b bufsize] [-c constant_traffic_time]
[-d datafile] [-D] [-e] [-f family] [-h] [-i plot_interval]
[-L max_loss] [-m max_qps] [-p port][-P plotfile] [-r rampup_time]
[-s server_addr] [-t timeout] [-x local_port]
[-y [algorithm:]name:secret]
Nominum

Command Synopsis 3
resperf Options

Option Description

-a local_addr Specifies the local address form which to send requests. The
default is the wildcard address.

-b bufsize Sets the socket send/receive buffer size in kilobytes.

-c constant_traffic_time Specifies the length of time, in seconds, for which to send a
constant stream of traffic.

The default is 0 seconds.

-d datafile Specifies an input data file.

The default is stdin.

-D Sets the DNSSEC OK bit (implying EDNS).

-e Enables EDNS 0.

-f family Specifies the address family of DNS transport. Options are:

• any—Uses the address type of the address as specified
in -s.

• inet—IPv4 transport.

• inet6—IPv6 transport.

The default is any.

-h Prints a usage message and exits.

-i plot_interval Specifies the time interval between plot data points, in sec-
onds.

The default is 0.

-L max_loss Specifies the maximum acceptable query loss, as a percent-
age.

The default is 100.

-m max_qps Specifies the maximum number of queries per second.

The default is 100000.

-p port Sets the port on which to query the server.

The default is 53.

Table 1-1 resperf options
Nominum

4 Chapter 1: resperf
Understanding resperf

resperf, unlike dnsperf, sends DNS queries at a controlled, steadily increasing rate—by default, resperf
sends traffic for 60 seconds, linearly increasing the amount of traffic from zero to 100,000 queries per
second (qps).

During testing, resperf tracks responses from the server as well as response rates, failure rates, and laten-
cies. After resperf stops sending traffic, it continues to “listen” for responses for an additional 40 seconds
to give the server time to respond to the last queries sent.

-P plotfile Specifies the name of the plot data file.

The default is resperf.gnuplot.

-r rampup_time Specifies the ramp-up time in seconds.

The default is 60.

-s server_addr Sets the server to query.

The default is 127.0.0.1.

-t timeout Specifies the request timeout value, in seconds.

After timeout is reached, resperf will no longer wait for a
response to a particular request after this many seconds have
elapsed.

Default is 45 seconds.

-x local_port Specifies the local port from which to send requests. Default
is the wildcard port (0).

-y [algorithm:]name:secret Adds a TSIG record (as per RFC 2845) to all packets sent,
using the specified TSIG key name, secret, and, optionally,
algorithm. The secret is expressed as a base-64 encoded
string. If you do not specify an algorithm, the algorithm
defaults to hmac-md5.

Option Description

Table 1-1 resperf options (continued)
Nominum

Understanding resperf 5
NOTE The 40-second time limit is longer than the overall query timeout of both Nominum Van-
tio and current BIND versions.

Defining Success

A successful test is complete when the query rate exceeds the server capacity and queries are dropped,
causing the response rate to either stop or decrease as the query rate increases.

Determining Maximum Throughput

Maximum throughput is determined from the plot as either:

• The highest response rate on the plot.

• The response rate at the point where a significant number of queries begin to be dropped.

Test Results

Test results are written to a file in a tabular format as a set of measurements of the query rate, the
response rate, the failure response rate and the average query latency as functions of time, and may be
plotted using gnuplot or a similar plotting tool. See “The Plot Data File” on page 10.

resperf, when constructing plot data, always places each query at the point in time at which the query
was sent, not the point in time at which the response (if any) was received. This permits easy comparison
of query and response rates.

Operational Considerations

Benchmarking a live caching server can have serious operational ramifications.

Query Volume and Bandwidth Saturation

A fast caching server such as Nominum Vantio, running on a XEON® server and resolving a mix of cache-
able and non-cacheable queries typical of an ISP’s customer traffic, is entirely capable of resolving over
100,000 qps. In the process of resolving those queries, the server will send more than 40,000 qps to
authoritative Internet servers, and receive answers to most of those queries.

If you assume an average request size of 50 bytes and a response size of 150 bytes, this adds up to
approximately 16Mb per second (Mbps) of outbound traffic and approximately 48 Mbps of inbound traf-
fic.
Nominum

6 Chapter 1: resperf
Ensure that your internet connection can handle this amount of bandwidth with room to spare. If you fail
to do so:

1. You may saturate your connection, causing a service degradation for your users.

2. More seriously (in the context of testing accuracy), you may wind up measuring the speed of
the connection instead of the speed of the server.

Firewalls

Ensure that no stateful firewalls exist between the caching server and the Internet. As a rule, stateful fire-
walls can’t handle the amount of UDP traffic generated by resperf, and may skew test results by:

• Dropping packets.

• Locking up.

• Crashing.

Separate But Equal

It is recommended that resperf and the name server under test be run on separate machines, so that the
CPU usage of resperf does not slow down the name server. The two machines should be connected with
a fast network, preferably a dedicated Gigabit Ethernet segment. Testing through a router or firewall is
not advisable.

Performance testing at the traffic levels involved is essentially a hard real-time application. At a query rate
of 100,000 qps, a 1/100s delay translates into 1000 incoming UDP packets—this is far more than most
operating systems can buffer.

Therefore—on the same LAN as the server under test—run resperf on its own machine, ensuring that:

• The machine running resperf is at least as fast as the server being tested—otherwise, it may
become a performance bottleneck.

• There are no other applications running on the machine running resperf.

Timer Granularity and CPU

Most operating system timers are of too coarse a granularity to schedule packet transmissions at sub-mil-
lisecond intervals. As a result, resperf busy-waits between packet transmissions, constantly polling for
responses. It’s therefore normal for resperf to consume 100% CPU during the whole test run, even during
periods where query rates are relatively low.
Nominum

What You Will Need 7
What You Will Need

A Query Input File

For resperf, you need to construct a dnsperf input file containing a large and realistic set of queries, on
the order of ten thousand to a million. This can be the same file you use for testing dnsperf. The input file
contains one line per query, consisting of a domain name and an RR type name separated by a space. The
class of the query is implicitly IN.

The latest query file is available for download at ftp://ftp.nominum.com/pub/nominum/dnsperf/data/.

When measuring the performance serving non-terminal zones such as the root zone or TLDs, note that
such servers spend most of their time providing referral responses, not authoritative answers. Therefore, a
realistic input file might consist mostly of queries for type A for names below, not at, the delegations pres-
ent in the zone. For example, when testing the performance of a server configured to be authoritative for
the top-level domain fi, which contains delegations for domains like
helsinki.fi and turku.fi, the input file could contain lines like

www.turku.fi A
www.helsinki.fi A

where the www prefix ensures that the server will respond with a referral. Ideally, a realistic proportion of
queries for nonexistent domains should be mixed in with those for existing ones, and the lines of the
input file should be in a random order.

Configuration

In resperf plots, limits on the number of simultaneous resolutions (like the max-recursive-clients
statement in Nominum Vantio or the recursive-clients option in BIND 9) show up as increases in
the number of failure responses.

To avoid this, increase these limits.

Nominum’s recommended settings are:

• Vantio—Set max-recursive-clients to 10000 (ten thousand).

• BIND 9—Set recursive-clients to 100000 (one hundred thousand).

NOTE Ensure the server cache is empty before starting a test. If the cache contains data from a
previous test that used the same queries, the server answers all queries from the cache,
yielding inflated performance numbers.
Nominum

8 Chapter 1: resperf
The resperf-report Script

The resperf-report script invokes resperf, directing the command output to a file that creates an
HTML report.

To use the resperf-report script, you must install gnuplot on your server. The installed version of
gnuplot must support the png terminal driver. If gnuplot supports gif but does not support png, open the
resperf-report script and change the line terminal=png to terminal=gif.

Running Tests

To run resperf, providing the minimal requirements of a server IP address and the query data file, issue a
command like:

resperf -s 10.0.0.2 -d queryfile
As resperf runs, some status messages and summary statistics are written to stdout, and plot file
data is written to resperf.gnuplot in the current directory (unless another plot file name has been
specified with the -P option). The following example shows sample output from the resperf com-
mand:

DNS Resolution Performance Testing Tool
Nominum Version 2.0.0.0.d
[Status] Command line: resperf -p 12345 -d in
[Status] Sending
[Status] Fell behind by 1039 queries, ending test at 39331 qps
[Status] Waiting for more responses
[Status] Testing complete
Statistics:
Queries sent: 463036
Queries completed: 463036
Queries lost: 0
Run time (s): 100.000000
Maximum throughput: 36250.000000 qps
Lost at that point: 0.00%

Test Duration

A test run, using the default settings, takes 100 seconds at most, comprised of 60 seconds of traffic
ramp-up followed by 40 seconds of waiting for responses. However, in practice, the 60-second traffic
phase is usually curtailed.
Nominum

Running Tests 9
There are several different conditions under which resperf will transition from the traffic-sending phase to
the waiting-for-responses phase:

• resperf exceeds 65,536 outstanding queries—This is the most frequent reason resperf stops
sending queries before the 60 seconds has finished, and this occurs because resperf has
exceeded the capacity of the server being tested.

The limit of 65,536 queries originates with the number of possible ID field values in the DNS
packet—resperf allocates a unique ID for each outstanding query, and is therefore unable to
send further queries if the set of possible IDs is exhausted.

• resperf is unable to send queries fast enough—resperf may fall behind in query transmission
because it cannot send queries quickly enough. If so, once the backlog reaches 1000 queries,
resperf prints a message describing the number of backlogged queries and stops sending traf-
fic.

If this message appears, ensure that the machine running resperf is sufficiently fast and has no
other applications running, and monitor the CPU usage of the server under test.

• resperf successfully reaches the maximum query rate—resperf may run for its full allotted time
and successfully reach the maximum query rate (by default, 60 seconds and 100,000 qps).

Troubleshooting

Server response rates, regardless of what causes the test to end, should flatten towards the end of the
test. If this trend does not show in the result plot, the server load is not heavily enough.

If the CPU usage of the server under test doesn’t reach 100% (or close to it) at the point of maximum
traffic, you likely have a bottleneck in some other part of the test harness. For example, your external
Internet connection may be saturated.

As previously mentioned, if resperf is unable to send queries quickly enough, ensure that the machine
upon which it is running is sufficient for the purposes of testing—ensure that it’s fast enough, and that
there are no other applications running on the machine.
Nominum

10 Chapter 1: resperf
The Plot Data File

Test runs are divided by default into 0.5-second time intervals for the purposes of generating the plot
data file (alternative intervals may be specified using -i). Each line in the plot data file corresponds to one
interval, and contains the following values specified as floating-point integers:

Time

The midpoint of this time interval in elapsed seconds since the beginning of the test run.

Target queries per second

The number of queries per second scheduled to be sent in this time interval.

Actual queries per second

The number of queries per second actually sent in this time interval.

Responses per second

For this time interval, the number of responses received to queries sent, divided by the
interval length.

Failures per second

For this time interval, the number of non-NXDOMAIN and non-NOERROR responses
received to queries sent, divided by the interval length.

Average latency

For queries sent in this time interval, the average time between the sending of a query
and the receiving of a response.

Measurements for any given query always apply to the time interval within which the query was sent, not
the time interval within which the response (if any) was received. For example, if no queries are dropped,
the query and response curves are identical. However, if a plot shows 10% failure responses at t=5 sec-
onds, it means that 10% of the queries sent at t=5 seconds eventually failed, not that 10% of the
responses received at t=5 seconds were failures.
Nominum

Plotting Test Results 11
Plotting Test Results

The resperf-report shell script runs resperf with its output redirected to a file, from which an illustrated
report in HTML format is automatically generated. resperf-report accepts the command-line arguments in
Table 1-1, passing those arguments unchanged to resperf.

Reports are stored with a unique filename based on the current date and time. For example:

20060812-1550.html

PNG images of the plots and other auxiliary files are stored in separate files beginning with the same
date-time string.

For example, to benchmark a server running on 10.0.0.2, you could run

resperf-report -s 10.0.0.2 -d queryfile
and then open the resulting 20060812-1550.html file in a web browser.

NOTE resperf-report uses gnuplot to generate plots—ensure that gnuplot is installed, and that
it supports the gif terminal driver. gnuplot may be obtained at http://www.gnuplot.info.

To copy the report to a separate machine for viewing, copy the .gif files along with the .html file, or copy
all of the files using

scp 20060812-1550.* host:directory/

Resperf Plots

The resperf-report contains two plots generated by gnuplot:

• Query/response/failure rate

• Latency
Nominum

http://www.gnuplot.info/

12 Chapter 1: resperf
Query/response/failure Rate Plot

The Query/response/failure rate plot contains three graphs. Use the graphs these determine how the
server behaves under an increasing traffic load:

• Queries sent per second—Displays the amount of traffic being sent to the server. A straight
diagonal line reflects the linear ramp-up of traffic.

• Total responses received per second—Displays how many of the queries received a
response from the server. All responses are counted, whether successful (when a NOERROR
or NXDOMAIN message is returned) or not (when a SERVFAIL message is returned).

• Failure responses received per second—Displays how many of the queries received a failure
response. A response is considered to be a failure if its RCODE is not NOERROR nor NXDO-
MAIN.
This graph, which appears near the bottom of the plot, typically shows a linear ramp with
fluctuation where failing queries are interspersed with successful queries. The number of
failures increases in proportion to the traffic load. A sharp spike in this graph indicates the
load has exceeded the capacity of the server. This occurs if the server reacts to an overload
by sending SERVFAIL responses (instead of by dropping queries). A sudden increase in the
number of failures indicates you need to increase the exceeded limit.

NOTE Initially, the “Total responses received per second” graph may overlap the “Queries sent
per second” graph. As the load exceeds the server capacity, the “Total responses received
per second” graph flattens out and diverges from the “Queries sent per second” graph,
indicating that some queries are being dropped.

Figure 1-1 shows an example of a query/response/failure rate plot.
Nominum

Plotting Test Results 13
Figure 1-1 Query/Response/Failure Rate Plot

Latency Plot

The Latency plot contains an “Average latency” graph that shows latency variations during the course of
a test. The “Average latency” graph typically exhibits a downward trend because, during the test, the
cache hit rate improves as the number of responses cached increases (and the latency for a cache hit is
smaller than for a cache miss). A sharp spike in the graph indicates the point at which the server becomes
overloaded.

Do not use the latency graph for absolute latency meaFsurements or comparisons between servers; the
latencies shown in the graph do not represent production latencies due to an initially empty cache, and
the deliberate overloading of the server occurs towards the end of the test.
Nominum

14 Chapter 1: resperf
NOTE All latency measurements are displayed on the plot at the horizontal position that corre-
sponds to the time when the query was sent (and not when the response, if any, was
received). This enables the comparison of query and response rates; for example, if no
queries are dropped, the query and response graphs are identical. If the plot shows 10%
failure responses at 5 seconds, this indicates that 10% of the queries sent at 5 seconds
failed (and not that 10% of the responses received at 5 seconds were failures).

Figure 1-2 shows an example of a latency plot.

Figure 1-2 Latency Plot

Interpreting Results

Summary statistics are printed to standard output at the end of the test, and include the server’s mea-
sured maximum throughput.
Nominum

Interpreting Results 15
By default, the maximum throughput is the highest point on the response rate plot, without regard to the
number of queries dropped or failing at that point. If you want resperf to report throughput at the point
in the test where the percentage of queries dropped exceeds a given limit, which may be a more realistic
indication of how much the server can be loaded while still providing an acceptable level of service, use
the -L command-line option.

For example, specifying the following command forces resperf to report the highest throughput reached
before the server starts dropping more than 10% of queries received:

resperf -s 10.0.0.2 -L 10 -d queryfile
When a server is driven into overload, the service it provides may deteriorate gradually, and this deteriora-
tion can manifest itself in any of the following ways:

• queries being dropped

• an increase in the number of SERVFAIL responses

• an increase in latency

A Note On Failed Queries

All plots should be manually inspected to ensure that they don’t contain an abnormal number of failed
queries. It is not possible to automatically constrain results based upon the number of failed queries,
because failed queries (unlike dropped queries) occur even when the server is not overloaded. Addition-
ally, the number of failed queries is heavily dependent upon both query data and network conditions.

Generating Constant Traffic

Generate a constant stream of traffic by using the “-c” (constant) and “-m” (maximum number of queries
per second) options, as in the following example:

resperf -d input_file -s server -m 10000 -c 3600
To avoid the initial 30-second gradual ramp-up of traffic at the beginning of the test (which can over-
whelm a server that is starting with an empty cache), include “-r 0” option to instantly start the stream of
traffic, as shown in the following example:

resperf -d input_file -s server -m 10000 -c 0 -r 0
Nominum

16 Chapter 1: resperf
NOTE resperf does a linear ramp-up of traffic from 0 to “-m” queries per second over a period
of -r seconds, followed by a plateau of steady traffic at “-m” queries per second (last-
ing for -c second), followed by a 40 second wait for responses. To suppress the ramp-up
or plateau, include “-r 0”and “-c 0” in the resperf command string. “-c 0” is the default.

Be aware that sending traffic at high rates for a long time requires large amounts of input data. A
long-running test generates a large amount of plot data that is kept in memory for the duration of
the test. To reduce the memory usage and the size of the plot file, include the “- i” option as follows
to increase the interval between measurements from the default of 0 seconds:

resperf -d input_file -s server -m 10000 -c 0 -r 0 -i 5

NOTE When using resperf for long-running tests, ensure the traffic rate specified with the “-m”
option can be sustained by resperf and the server being tested. Otherwise, the test will
fails if query IDs run out (because of large numbers of dropped queries) or if resperf falls
behind its transmission schedule.
Nominum

	resperf
	Command Synopsis
	resperf Options

	Understanding resperf
	Defining Success
	Determining Maximum Throughput
	Test Results
	Query Volume and Bandwidth Saturation
	Firewalls
	Separate But Equal
	Timer Granularity and CPU

	What You Will Need
	A Query Input File
	Configuration
	The resperf-report Script

	Running Tests
	Test Duration
	Troubleshooting

	The Plot Data File
	Time
	Target queries per second
	Actual queries per second
	Responses per second
	Failures per second
	Average latency

	Plotting Test Results
	# scp 20060812-1550.* host:directory/
	Resperf Plots
	Query/response/failure Rate Plot
	Latency Plot

	Interpreting Results
	A Note On Failed Queries

