The Domain Name System: Where Internet Operations, Research, Security and Policy meet

Keith Mitchell CWRU EECS Seminar December 2013

30 Years of DNS

- The first documents defining the Domain Name System were published by Paul Mockapetris as RFCs 882 and 883 in November 1983
- Moved beyond ARPAnet's "hosts.txt" flat name->IP address mapping file
- Distributed, hierarchical, extensible recipe for success !
- I seem to have been messing with it since 1985...

Talk Overview

- Introduction
- The DNS and Internet Abuse
- DNS Data Gathering and Analysis
- Domain Name Public Policy
- Case Study "Collisions"
- Conclusions
- Q&A, Discussion

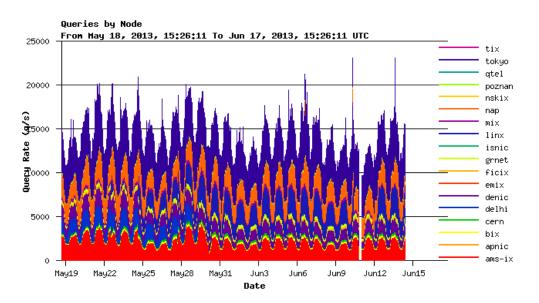
Introduction

Speaker's Background

- Internet operations and development since 1986, co-founder of:
 - UK's first commercial ISP, PIPEX (CTO)
 - London Internet Exchange, LINX (CEO)
 - .uk TLD registry, Nominet UK
 - *RIPE NCC* Executive Board (Chair)
 - UK Network Operators' Forum (Chair)
- Moved to US/Cleveland 2006:
 - Internet Systems Consortium (VP Engineering until 2012)
 - DNS-OARC (President)
 - UKNOF (MD)
 - Open-IX (Board)
 - SMOTI Enterprises (Principal)

Disclaimer

- My background is in network operations and startups, my practice is in running critical infrastructure Internet Engineering nonprofits
- I am none of a researcher, security expert, nor programmer – this talk draws extensively on the hard work of others in our community


DNS 101

- *Clients:* your app, desktop, mobile...
- Resolver servers:
 - answer queries directly from clients
 - cache answers
 - send queries onto:
- Authoritative servers:
 - answer queries for a particular branch of the DNS tree hierarchy ("zone")
 - answer with referrals to other authoritative servers for queries outside their zone
 - root servers are ultimate authority at apex of namespace
- RFC 1034, 1035 *et al*

The Importance of the DNS

- Modern web sessions typically involve dozens of DNS lookups
- If your providers' DNS resolver fails, you will notice..
- If a top-level authoritative provider fails, everyone will notice !

DNS Root Scalability

What is DNS-OARC ?

The Domain Name System Operations Analysis and Research Center (DNS-OARC) is a non-profit, membership organization that seeks to improve the security, stability, and understanding of the Internet's DNS infrastructure.

DNS-OARC's mission is:

- to build relationships among its community of members and facilitate an environment where information can be shared confidentially
- to enable knowledge transfer by organizing workshops
- to promote research with operational relevance through data collection and analysis
- to increase awareness of the DNS's significance
- to offer useful, publicly available tools and services

OARC Members

Afilias (.org, .info) Google ICANN Nominet (.uk) RIPE NCC

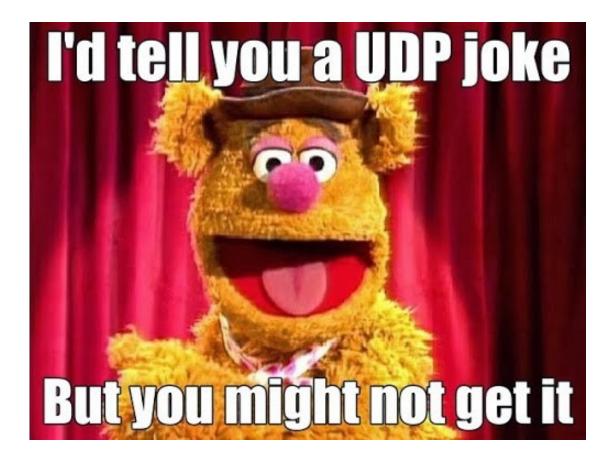
AFNIC Akamai ARIN Cisco DENIC (.de) EurID (.eu) Microsoft Neustar (.biz) SIDN (.nl)

.CLUB .SE **ARI Registry Services** Artemis (.secure) CentralNic CIRA (.ca) CloudShield CNNIC (.cn) CORE CZ.NIC **DK Hostmaster** Donuts **dotBERLIN** Dyn eNom IEDR (.ie) Internet Identity

JAS Advisors JPRS (.jp) **KISA/KRNIC** Mark Monitor Minds+Machines NIC Chile (.cl) NIC-Mexico (.mx) Nominum Norid (.no) NZRS Registro.BR RTFM SWITCH (.ch) tcinet.ru XYZ

Comcast ISC Verisign (.com) **AFRINIC** APNIC CAIDA Cogent dotua LACNIC **McAfee** Measurement Factory NASA Ames Netnod NLnet Labs NTT OTTIX PowerDNS Public Interest Registry Secure64 Team Cymru University of Maryland USC/ISI WIDE

OARC's Functions


- Facilitate co-ordination of DNS operations community
- Ongoing data gathering
- Run twice-yearly workshops
- Operate community info-sharing resources
 - Mailing lists, jabber, website, trust vetting
- Maintain/host DNS software tools
- Outreach via external and shared meetings

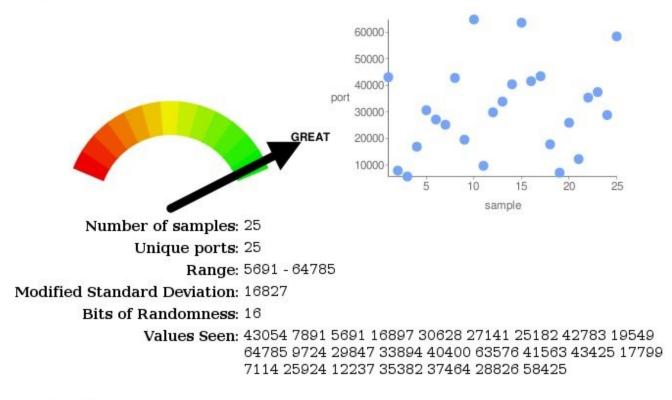
The DNS and Internet Abuse

Most DNS Traffic is over UDP

Cache Poisoning

- If a false name->IP mapping is inserted into a server you are using, your traffic can potentially be re-directed to a malicious site
- In theory, there are mechanisms to prevent this:
 - DNS transaction ID
 - application SSL certificates
 - UDP vs TCP
 - DNSSEC
- In practice, the protocol as originally designed has loopholes..

The "Kaminsky" Attack


- In 2008, Dan Kaminsky discovered a new vector for Cache Poisoning attacks against DNS transactions
- Issue (small size of transaction ID) known for years, but new exploit via caching of additional answer records from spoofed responses
- The solution was to increase the entropy used to match up queries/responses by randomizing the UDP source port
- This was a major multi-vendor co-ordinated effort over many months
- It *appears* to have been successful, as cache poisoning attacks in the wild since then, while documented are rare

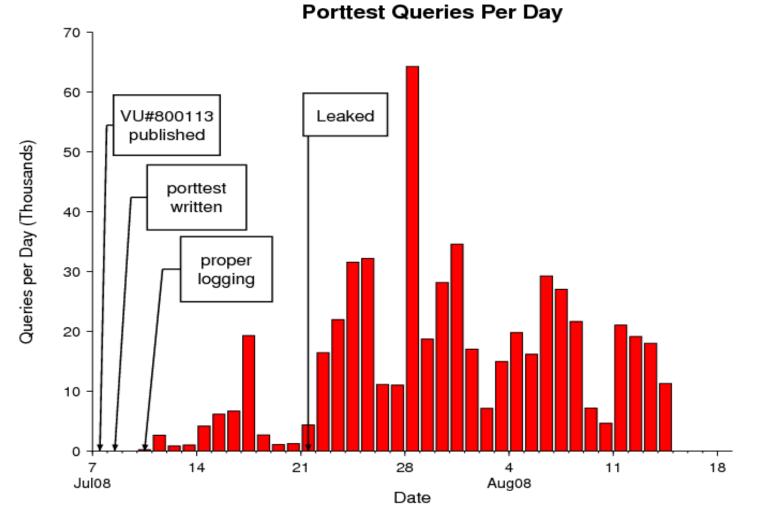
OARC Web Port Tester

https://www.dns-oarc.net/oarc/services/dnsentropy

66.57.17.110 Source Port Randomness: GREAT

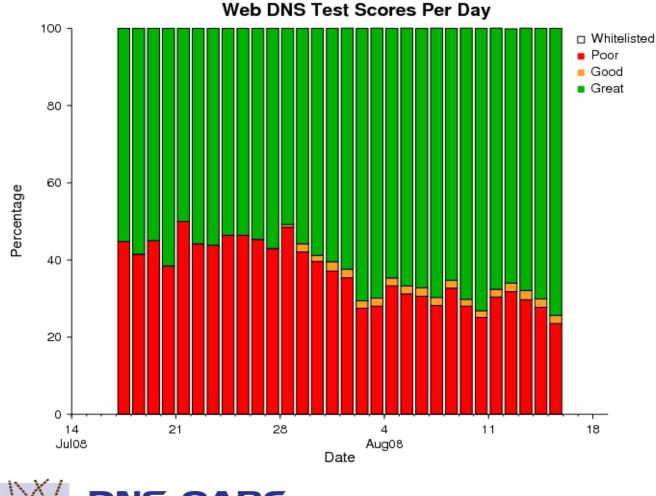
OARC Web Port Tester

207.217.126.41 Source Port Randomness: POOR



Shulman/Herzberg Attack

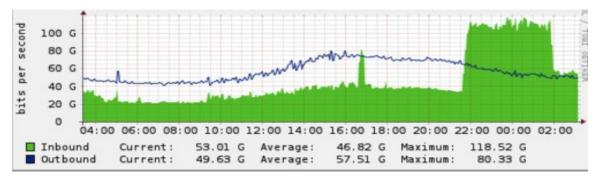
- More recent work on variant cache poisoning attack:
 - https://sites.google.com/site/hayashulman/files/fragmentation-poisoning.pdf
 - https://indico.dns-oarc.net/contributionDisplay.py?contribId=18&confld=1
- DNS packets have grown in length overall since 2008, leading to greater use of EDNS0/UDP fragmentation
- The "Kaminsky" entropy is only in the first datagram fragment
- It thus becomes possible (though tricky) to insert poison records in subsequent fragments



Data from OARC Port Test Tools

•

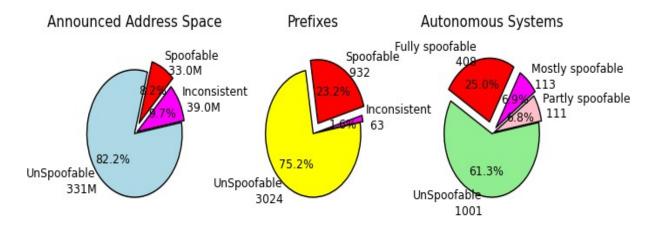
Data from OARC Port Test Tools


Amplification Attacks

- Botnets are commonly used for Distributed Denial of Service (DDoS) attacks by bad actors
- One way attacks can have much more impact is through *amplification*
- Send a small packet to a 3rd party with a spoofed source address, which triggers a much larger packet back to the victim
- Some DNS queries (including DNSSEC, and ANY), generate a *much* larger response than query
- Not just DNS: *SNMP*, *NTP*, *Chargen/19* are all UDP-based protocols which can act as amplifying reflectors if server ports not properly restricted

SpamHaus/StopHaus Attack

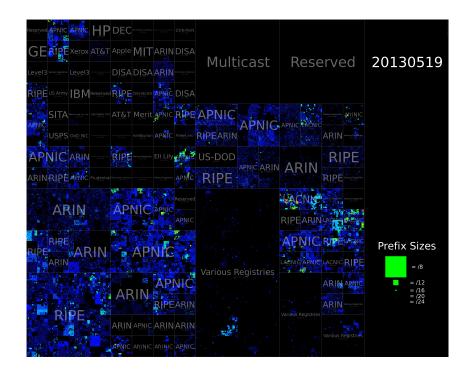
• March 20th 2013:



- At over 75Gb/s, this is one of the biggest ever documented DDoS attacks seen on the Internet:
- http://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho
- This was realized through DNS amplification..

IP Address Spoofing

 This is possible because more than 20% of Internet providers don't do source address verification (BCP38), making spoofing of source (victim) IP addresses trivial


• Source: Spoofer Project: http://spoofer.cmand.org

Open Resolvers

- There are some 30m DNS resolvers which are mis-configured to openly respond to queries from anywhere
- Source:

http://www.openresolverproject.org

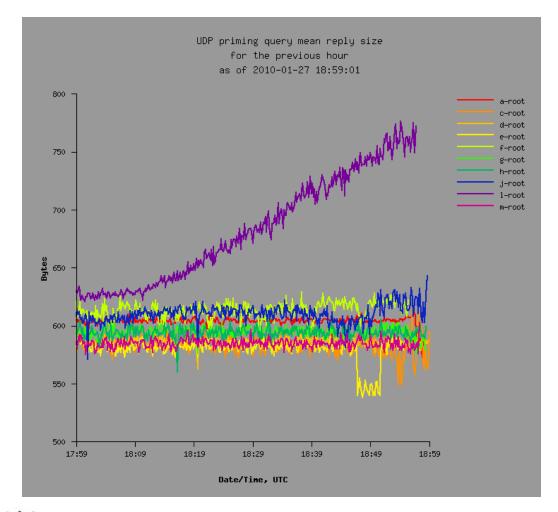
Addressing the Problem

- The work of researchers and operators doing projects like Spoofer and OpenResolver is invaluable to detecting, measuring and understanding these problems
- There is no substitute for gathering live data from the Internet
- While no panacea, the DNS is pervasive enough its use for data gathering can make it part of the solution, not just the problem..
- Solving these problems to stop the abuse is a long-haul, education based on sound data and analysis is vital to these efforts

DNS Data Gathering and Analysis

DNS Data Gathering

- Generally involves sensors running on, or adjacent to servers, e.g.
 - Domain Statistics Collector (DSC) continuous traffic analysis and summary, no payload
 - "Day in the Life of the Internet" (DITL) full query payload for 48 hours at least once a year
 - Capturing data from user-driven test tools
 - "Passive DNS" capture of resolver->authoritative server traffic



OARC's DITL Dataset

- Since 2006, at least once per year to provide "Internet Science" baseline
- Also during key DNS events such as DNSSEC signing of root, IPv6 enabling, potentially during incidents
- Gathered from most Root and many Top-Level Domain (TLD) operators
- Full query traffic to authoritative servers
- 80Tb dataset
 - OARC has been doing "big data" for nearly a decade...
 - less challenging with modern hardware than when we first did this !
 - https://www.dns-oarc.net/oarc/data/ditl

DITL in Action

The Case for DNSSEC

Current DNS fixes are Interim

- Source port randomization shifts burden of protecting one application onto the operating system platform
- Increasing bandwidth and CPU power are eating away at extra entropy
- As Shulman/Herzberg have demonstrated, there's always scope for new variants on old attacks
- Switching all DNS transactions from UDP to TCP has other issues
- Nobody thought pervasive State censorship and surveillance was even a possibility when the DNS was designed ⁽³⁾

Reasons to do DNSSEC

- Standards and implementations are now mature
- Effective defense against cache poisoning !
- Great anti-phishing measure
- Interferes with commercial violation of Internet end-to-end
 principle
 - "NXDOMAIN Redirection"
 - Netalyzr will tell you if your provider is tampering
- General infrastructure integrity enhancement
- DANE could even replace SSL certs one day..

Understanding DNSSEC

- Allows for cryptographic verification that DNS records are authentic
- DNSSEC enabled authoritative servers provide digital signatures in addition to "standard" DNS data
- DNSSEC validating resolvers provide authenticated responses with proven integrity
- Clients using validating resolvers get guaranteed "good" data
- Data that does not validate provides a "SERVFAIL" response

Network Impact of DNSSEC

- Signed DNS responses are BIG 512 byte UDP packets just don't cut it
 - Need to use EDNS0 RFC 2671: "Extension Mechanisms for DNS"
 - Allows for bigger DNS messages via IP Fragments
- Network elements non-transparent to EDNS0 or large MTU UDP 53 may degrade DNS queries
- Testing tools:
 - https://www.dns-oarc.net/oarc/services/replysizetest
 - https://netalyzr.icsi.berkeley.edu

Obstacles to DNSSEC

- Registrar support variable
- Hard to understand/configure
- Easy to break
- Difficult to use admin tools
 - getting better, e.g. BIND9.9
- Firewall and CPE equipment issues
- Education and experience-sharing can fix these

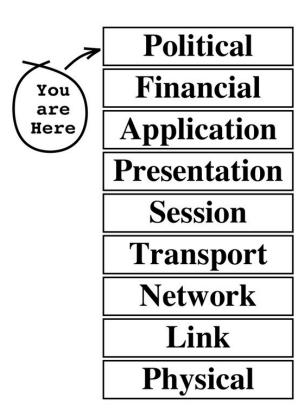
Domain Name Public Policy

Internet Governance Primer

- The Internet does not hold together without effort
- Balance of competition and co-operation
- Some functions are too important to be trusted to corporations or governments !
- "Bottom-up self-organizing multi-stakeholder" model
- Often embodied by mutual nonprofit organizations

Internet Governance in Practice

- Standards: *IETF, W3C, IEEE, ...*
- IP addresses: IANA, ARIN, RIPE NCC, LACNIC, APNIC, AfriNIC
- Operations: NANOG, RIPE, APRICOT, UKNOF, ...
- Domain Names: ICANN, PIR, CENTR,
- Policy: ISoc, EFF, EuroISPA, ...
- Internet Exchanges: *Euro-IX, Open-IX, ...*


DNS Governance

- ICANN is often misunderstood as "controlling the Internet", but its remit is strictly only names and numbers
- Works with registries, registrars, ccTLDs, gTLDs, governments, root operators
- In past years, has approved 100s of new Top-Level Domains to be created (e.g. recently):
 - .bike, .guru, .xxx, .**са**йт, . 游戏

Evidence-Informed Policy

- Decisions to make changes at the top level of the DNS are ultimately commercial/political ones
- Many vested high-stakes commercial interests involved..
- ..but cannot be made in an operational vacuum
- Could there be adverse security/stability impacts ?
- How best to inform policy makers with hard evidence ?

Case Study: "High-Risk Strings Collisions"

DNS Security Collides with Policy

- ICANN approves new TLDs on a competitive bidding process
- Various domains such as ".corp", ".home" applied for in process
- Unfortunately various entities already make non-standard use of "pseudo TLDs" in their internal networks
 - some of these are same as new TLDs being applied for
 - worse, some of these have "internal-use-only" SSL website-security certificates already issued for them !
- Could creating these domains on the wider Internet "collide" with their internal usage ?
- Worse, could it lead to website impersonation and hi-jacking ??

OARC's Data-set to the Rescue

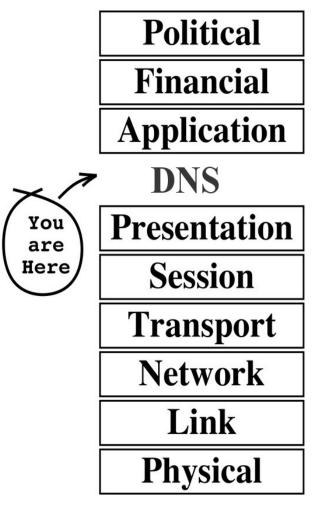
- Rather than debate/litigate endlessly, it's possible to analyze data already gathered to decide the extent of queries for potential new TLDs on the live Internet
- OARC's DITL dataset from 2006-2013 available for this:
 - not the perfect resource for such research, but much better than nothing at all
 - triggered donations of some extra CPU-power

ICANN Collisions DITL Query Analysis

 https://www.icann.org/en/about/staff/security/ssr/ name-collision-02aug13-en.pdf

Rank	Proposed TLD	As TL	As SLD	At all other levels	Total
1	home	595,024	24,117	3,723	622,865
2	corp	122,794	31,084	39,985	193,864
3	site	13,013	212	412	13,637
4	global	10,838	8,895	13,838	33,571

- Summary:
 - Not safe to delegate ".corp" or ".home" new TLDs
 - Mostly safe to delegate 80% of rest
 - 20% need further study, safeguards



Conclusions

Conclusions

- In a world of mobile apps and search engines, the DNS may be much less visible to endusers than it was 30 years ago
- But it still underpins the Internet in critical ways
- Yet another invisible layer in the protocol stack
- A unique place to measure and tinker

Conclusions

- There is no substitute for gathering live data from the Internet
 - this can be done whilst still respecting privacy
- The DNS is pervasive enough its use for data gathering can make it part of the solution, not just the problem
- Operators have live data network data, but don't always have the skills/insight/time to analyze it
- Researchers can greatly help understand this data, but don't always find it easy to obtain, or to interpret operational impact
- Working together we can answer important protocol, implementation, security and policy questions

Further Information

- Web:
- Workshops:
- E-mail:
- Social:
- IM:
- Phone:

- https://www.dns-oarc.net https://indico.dns-oarc.net keith@dns-oarc.net dns-operations@lists.dns-oarc.net https://www.linkedin.com/groups/DNSOARC-3193714
- xmpp:keith@jabber.dns-oarc.net +1 650 423 1348 (EST)

Questions ?

